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Abstract

In this paper we investigate the use of a recent method called "relative represen-
tations" to enable zero-shot model stitching in visual RL between encoders and
policies trained on the CarRacing environment, which does not require additional
training. Our experiments show that the relative representation framework can
be effectively applied to the RL realm to obtain compositionality and therefore
zero-shot stitching across agents with multiple variation factors: i) random seed for
the training; ii) environment style (background color); iii) training algorithm used
(PPO and DDQN).

1 Introduction

Model stitching is a technique that has been explored in standard deep learning but, to the best
of our knowledge, it is not applied to reinforcement learning (RL). It is standard practice in the
Reinforcement Learning field to repeatedly train agents from scratch in an end-to-end fashion: both
the feature extractor module and the policy. Ideally, in scenarios where multiple tasks are performed
within the same environment, we would like to have model trained on a certain task, freeze its policy
and swap its encoder with another, so that the policy could perform on unseen tasks or environment
variations, such as driving a car on different weather conditions, all without retraining. Moved by this
idea, we decided to exploit relative representations [Moschella et al., 2023], a method for zero-shot
communication between latent spaces. We demonstrate that, by using this method it is possible to
perform zero-shot stitching between encoders and policies trained on slight variations of the same
environment. This enables the reuse of neural components and could be an initial step towards model
stitching across different tasks. We performed our preliminary experiments using a modified version
of the CarRacing environment (Figure 1). This modified environment features a discrete action space
and allows for background color variations. We train our end-to-end agents, consisting of a standard
CNN-based feature extractor and a policy. Empirical results then demonstrate that by employing
relative representations, a policy that was trained jointly with an encoder in an environment with
a specific background color, could seamlessly be combined with an encoder that was trained on a
different background color in a zero-shot manner, with little to no performance loss.
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Figure 1: The modified version of the Car Racing environment, where we can change the color of the
background.

2 Preliminaries

2.1 Reinforcement Learning from images

We formulate image-based control as a Markov Decision Process (MDP) [Bellman, 1957]. As
opposed to the common practice [Mnih et al., 2013], we do not approximate the current state of the
system by stacking three consecutive prior observations, but adopt a simplified approach and use
a single rgb frame. With this in mind, such MDP can be described as a tuple (X ,A,P,R, γ, d0),
where X is the state space (a single rgb image), A is the action space, P : X ×A → ∆(X ) is the
transition function that defines a probability distribution over the next state given the current state
and action, R : X × A → [−100, 1] is the reward function, γ ∈ [0, 1) is a discount factor, and
d0 ∈ ∆(X ) is the distribution of the initial state x0. The goal is to find a policy π : X → ∆(A) that
maximizes the expected discounted sum of rewards:

Eπ

[ ∞∑
t=0

γtrt

]
, (1)

where x0 ∼ d0, and for all t, we have at ∼ π(·|xt), xt+1 ∼ P(·|xt, at), and rt = R(xt, at).

2.2 Model stitching

Model stitching refers to the process of combining different neural networks to create a novel
model. It involves integrating parts from multiple networks or ensuring compatibility between
latent spaces for tasks such as verifying similarity. Several studies have explored this concept and
introduced techniques to facilitate model stitching. One approach is the utilization of trainable
stitching layers, which have been previously introduced in literature [Lenc and Vedaldi, 2015, Bansal
et al., 2021, Csiszarik et al., 2021]. These stitching layers enable combining specific network
components or facilitate comparisons between latent spaces, effectively integrating different network
parts. Alternatively, certain works have proposed methods that generate directly compatible and
reusable network components without relying on explicit stitching layers [Gygli et al., 2021, Yaman
et al., 2022]. These approaches aim to produce network components that can be readily combined
without the need for additional stitching layers. An important concept in this field is that of relative
representations [Moschella et al., 2023, Norelli et al., 2022]. Relative representations enable zero-shot
stitching between distinct neural networks trained on semantically similar datasets. This approach
assumes the use of decoders trained on relative representations, which facilitates the effective reuse
of models. Leveraging relative representations makes it possible to stitch together different networks
trained on semantically similar data, even in scenarios where the networks were not originally
designed to be combined.
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2.3 Relative Representations

Relative representations, as proposed by [Moschella et al., 2023], offer a simplified framework for
facilitating communication among diverse latent spaces in neural models. This approach introduces
an alternative perspective by shifting from an absolute coordinate system to a relative one, with
respect to a predefined set of anchor samples. Each sample is represented by the distances (or
similarities) between its embedding and each of the anchor embeddings.

More formally, let us be given an encoder E : X → Rk, a set of anchors A ⊂ X , and the row-wise
matrix representation of the samples X and the anchors A. By choosing cosine similarity as the
similarity function, the relative representations Zrel of the samples X are defined as:

Zrel = E(X)E(A)T , (2)

where the embeddings produced by E are rescaled to unit norm.

Employing relative representations in a latent space, highlights its inherent structure. Under the
assumption that good models learn similar representations it enables the latent communication
between seemingly dissimilar spaces due to confounding factors.In this work, we apply relative
representations to remove the following factors: i) the background color of the observations; ii) the
training algorithm for the policy; iii) the random seed used for training.

3 Method

For our method, we frame agents in visual RL as composed of an encoder and a policy module. We
suggest employing relative representations to enable the reuse of encoders and policies trained on
different variations of the environment. Reuse is performed via zero-shot model stitching, training
the policies directly on the relative representations.

Therefore, given two agents, denoted as A and B, we define their associated encoders EA and EB ,
respectively. An encoder takes an observation x as input and produces a representation E(x), that is
converted into its relative form zrel by the transformation:

zrel = E(x)E(A)T . (3)

Similarly, we define the two policies πA and πB . A policy takes the representation zrel and generates
an action a:

a ∼ π(zrel) . (4)

In this work, we show how encoders and policies that were trained independently can be used jointly,
and without any fine-tuning, to define a zero-shot stitched agent. For example, by using the encoder
of agent B and the policy of A, one gets the stitched agent:

πA(EB(x)EB(A)T ) . (5)

Alternatively, one gets a different agent by stitching the encoder of A with the policy of B, namely
πB(EA(x)EA(A)T ). We remark that the input distributions of EA and EB may be different, as long
as they are semantically related (e.g., different background colors).

Throughout this paper, we will use encoders and policies trained using PPO, unless otherwise
specified.

3.1 Anchors selection

Anchors are an essential component of the relative representations. In their paper [Moschella et al.,
2023], the authors demonstrate that uniformly sampling anchors from the training dataset suffices. In
reinforcement learning, where datasets are not normally used, we needed to come up with a different
approach for anchors sampling, therefore we ran several episodes using a previously trained agent,
gathering observations. Although using a random agent was an option, we aimed to ensure that a
substantial portion of the observations gathered contained different variations of the track (straights,
turns..). From the pool of collected data, we randomly sample ndim anchors, that is the flattened
output dimension of the encoder.
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4 Experiments

In this section we compare the stitching performance between agents trained using absolute and
relative representations. Then, we perform an analysis of the latent spaces, comparing the absolute
encoders to the relative ones, showing that relative encoders produce the same features regardless of
the background color of the input observation, the seed or the training algorithm used.

4.1 Training

We trained policies using the CleanRL implementation of PPO [Huang et al., 2022], using the default
hypermarameters for both absolute and relative representations, with training curves being shown in
Image 2. Training with relative representations demonstrates comparable performance with only a
minor drop at the beginning, probably due to the continuously evolving anchors representations.
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Figure 2: Training curves comparing absolute to relative representations. Relative training shows
competitive performance with only a minor drop at the beginning.

4.2 Policy Stitching Evaluation

After training different agents on different background colors in the modified Car Racing environment,
we froze the encoders and policies of each agent and evaluated their performance on different tracks,
stitching for every combination of the background colors. Chosen colors are: green, red, blue, yellow.
The encoder is always chosen according to the actual track background color. So, a green encoder is
always tested on a track with a green background. Tests are performed for every color and over 5
track seeds, each seed corresponding to a different track. Table 1 compares the scores obtained when
evaluating agents with relative and absolute stitching. In each cell of the table, we present the average
return and standard deviation obtained over the 5 tracks. It’s important to note that the recorded score
represents the maximum return achieved during a run. In cases where the agent incurred penalties for
going off-road and potentially missed some checkpoints, the score was not reduced. This approach
accounts for situations in which an episode did not finish due to missed checkpoints although the
agent drove well enough. Although suffering from higher variance, the scores obtained using relative
representations remain consistent among almost every encoder-policy stitching test. With absolute
representation stitching, instead, policies are unable to interpret the representations coming from
different encoders, therefore being unable to drive.
Every agent was trained using different seeds, meaning that models’ weights had a different initializa-
tion.
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Policy

green red blue yellow

Rel Abs Rel Abs Rel Abs Rel Abs

E
nc

od
er green 714 ± 288 863 ± 109 840 ± 94 7 ± 0.7 870 ± 84 26 ± 4 685 ± 237 12 ± 4

red 774 ± 275 19 ± 3.8 692 ± 251 829 ± 116 288 ± 105 7 ± 0.7 638 ± 235 7 ± 0.7
blue 256 ± 163 7 ± 1 307 ± 124 7 ± 0.6 690 ± 200 759 ± 288 556 ± 71 8 ± 3

yellow 713 ± 204 7 ± 0.7 678 ± 81 33 ± 4 167 ± 66 26 ± 4 675 ± 233 874 ± 85

Table 1: Episode maximum return comparing stitching using absolute and relative representations.
Encoder (rows) and policy (columns) colors represent the track background on which that module
was trained on. Same color pairs describe the original, non-stitched model’s performance. Larger
scores are better. High variance is due to different tracks difficulty.

4.3 Latent space analysis

We conducted a latent space analysis to compare the features produced by absolute and relative en-
coders. To collect environment observations, we used the same action sequence from an independent
model to complete an episode, for two different background colors. This ensured that the collected
observations were independent of the models being compared. Specifically, we saved observations
x
(1)
i and x

(2)
j , for two different background colors, and where i and j range from 0 to T, the total

length of an episode, originating from the same environment track with the same seed but different
background colors. Despite the color difference, the interactions performed in both cases were
identical, resulting in images that differed only in background color when i == j.

Each figure in our analysis depicts the pairwise similarity between the representations of two
encoders, denoted as E(1) and E(2), by comparing E(1)(x

(1)
i ) and E(2)(x

(2)
j ). A higher value along

the diagonal of the figure indicates that the representations produced by the two encoders are highly
similar.

Figure 3 compares absolute (3.a) and relative (3.b)representations for encoders trained on green and
red backgrounds using PPO and same seed. Figure 4 performs the same comparison but with model
trained using different seeds, hence having different starting weights. It is easy to notice that the
absolute representations are even less similar in this setting, while the relative ones maintain their
similarity. If we were to rerun the tests in Table 1 using a models trained on a different seed for each
color, we would probably see even worse performance when using absolute representations.

Finally, Figure 5 shows comparison on green (5.a) and red (5.b) backgrounds, between relative
encoders trained using two different RL algorithms: DDQN and PPO. Surprisingly, the representations
produced by the two encoders are similar, indicating that encoders tend to learn the same features
regardless of the underlying learning algorithm.

(a) (b)

Figure 3: Similarity matrices comparing the similarity between the green background representations
and the red background representations. (a) shows the absolute latent spaces, while (b) the relative
latent spaces. The same seed is used to train these models, meaning that they had the same initializa-
tion.
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(a) (b)

Figure 4: Similarity matrices comparing the similarity between the green background representations
and the red background representations. (a) shows the absolute latent spaces, while (b) the relative
latent spaces. Each matrix shows comparison between encoders trained on different seeds.

(a) (b)

Figure 5: Plot comparing relative representations. a) shows the similarity between PPO and DDQN
representations on the green background, while (b)shows the similarity between PPO and DDQN
representations on the red background.

5 Conclusion

The use of relative representation in Reinforcement Learning seems to be a promising approach for
reusing trained models, both encoders and policies in a zero-shot fashion, showing compatibility
between neural modules across slight environment variations. Further in-deep studies remain to be
done, starting from the analysis of the latent space across different algorithms and environments.
Then, it remains to be seen whether relative representations could be used to stitch modules across
different tasks on environment where dynamics remain substantially the same, so that we could reuse
a trained encoder by stitching different policies trained on various tasks.
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